Thursday, 31 December 2015
Saturday, 26 December 2015
Friday, 25 December 2015
Hydro power plant animation
HOW CAN WE GET WATER POWER?
Hydropower, or hydropower, is a renewable energy source that generates energy through a dam or diversion structure to convert the natural flow of a river or other water. Hydropower depends on a continuous, continuous charge system for the water cycle to generate electricity, using fuel — water — which can be reduced or eliminated from the process. There are many types of hydropower systems, although all are powered by kinetic energy flowing water as it flows downstream. Electricity uses wind turbines and generators to convert that kinetic energy into electricity, which is then fed into a power grid for power in homes, businesses, and industries.
HOW DOES Electricity Produced On HYDROPOWER PLANTS?
Because hydropower uses water to generate electricity, plants are often found near water sources. The force found in moving water depends on both the flow of water and the change in elevation — also known as the head — from one point to another. The greater the flow and the higher the head, the more electricity can be generated.
At the plant level, water flows through a pipe — also known as a penstock — and surrounds the blades in the wind turbine, which rotates the generator to the final output. Many hydroelectric power stations operate in this way, including river running systems and pumped storage systems.
Wednesday, 23 December 2015
Tuesday, 22 December 2015
Working of Wind Turbines
a wind turbine works the opposite of a fan. Instead of using electricity to make wind, like a fan, wind turbines use wind to make electricity. The wind turns the blades, which spin a shaft, which connects to a generator and makes electricity. View the wind turbine animation to see how a wind turbine works or take a look inside.
Wind is a form of solar energy and is a result of the uneven heating of the atmosphere by the sun, the irregularities of the earth's surface, and the rotation of the earth. Wind flow patterns and speeds vary greatly across the United States and are modified by bodies of water, vegetation, and differences in terrain. Humans use this wind flow, or motion energy, for many purposes: sailing, flying a kite, and even generating electricity.
The terms wind energy or wind power describe the process by which the wind is used to generate mechanical power or electricity. Wind turbines convert the kinetic energy in the wind into mechanical power. This mechanical power can be used for specific tasks (such as grinding grain or pumping water) or a generator can convert this mechanical power into electricity.
TYPES OF WIND TURBINES
Modern wind turbines fall into two basic groups: the horizontal-axis variety, as shown in the photo to the far right, and the vertical-axis design, like the eggbeater-style Darrieus model pictured to the immediate right, named after its French inventor. Horizontal-axis wind turbines typically either have two or three blades. These three-bladed wind turbines are operated "upwind," with the blades facing into the wind.
Wind turbines can be built on land or offshore in large bodies of water like oceans and lakes. Though the United States does not currently have any offshore wind turbines, the Department of Energy is funding efforts that will make this technology available in U.S. waters.
SIZES OF WIND TURBINES
Utility-scale turbines range in size from 100 kilowatts to as large as several megawatts. Larger wind turbines are more cost effective and are grouped together into wind farms, which provide bulk power to the electrical grid. In recent years, there has been an increase in large offshore wind installations in order to harness the huge potential that wind energy offers off the coasts of the U.S.
Single small turbines, below 100 kilowatts, are used for homes, telecommunications dishes, or water pumping. Small turbines are sometimes used in connection with diesel generators, batteries, and photovoltaic systems. These systems are called hybrid wind systems and are typically used in remote, off-grid locations, where a connection to the utility grid is not available.
Learn more about what the Wind Program is doing to support the deployment of small and mid-sized turbines for homes, businesses, farms, and community wind projects.
Sunday, 20 December 2015
Thursday, 17 December 2015
Tuesday, 15 December 2015
hydricity
Solarkraftwerk Waldpolenz, the first Solar 40-MW CdTe PV Array installed by JUWI Group in Brandis, Germany. Credit: JUWI Group
Researchers are proposing a new "hydricity" concept aimed at creating a sustainable economy by not only generating electricity with solar energy but also producing and storing hydrogen from superheated water for round-the-clock power production.
"The proposed hydricity concept represents a potential breakthrough solution for continuous and efficient power generation," said Rakesh Agrawal, Purdue University's Winthrop E. Stone Distinguished Professor in the School of Chemical Engineering, who worked with chemical engineering doctoral student Emre Gençer and other researchers. "The concept provides an exciting opportunity to envision and create a sustainable economy to meet all the human needs including food, chemicals, transportation, heating and electricity."
Hydrogen can be combined with carbon from agricultural biomass to produce fuel, fertilizer and other products.
"If you can borrow carbon from sustainably available biomass you can produce anything: electricity, chemicals, heating, food and fuel," Agrawal said.
Findings are detailed in a research paper appearing this week (Dec. 14) in the online early edition of Proceedings of the National Academy of Sciences.
Hydricity uses solar concentrators to focus sunlight, producing high temperatures and superheating water to operate a series of electricity-generating steam turbines and reactors for splitting water into hydrogen and oxygen. The hydrogen would be stored for use overnight to superheat water and run the steam turbines, or it could be used for other applications, producing zero greenhouse-gas emissions.
"Traditionally electricity production and hydrogen production have been studied in isolation, and what we have done is synergistically integrate these processes while also improving them," Agrawal said.
The PNAS paper was authored by Gençer; former chemical engineering graduate student Dharik S. Mallapragada; François Maréchal, a professor and chemical process engineer from École Polytechnique Fédérale de Lausanne in Switzerland; Mohit Tawarmalani, a professor and Allison and Nancy Schleicher Chair of Management at Purdue's Krannert School of Management; and Agrawal.
In superheating, water is heated well beyond its boiling point – in this case from 1,000 to 1,300 degrees Celsius - producing high-temperature steam to run turbines and also to operate solar reactors to split the water into hydrogen and oxygen.
"In the round-the-clock process we produce hydrogen and electricity during daylight, store hydrogen and oxygen, and then when solar energy is not available we use hydrogen to produce electricity using a turbine-based hydrogen-power cycle," Tawarmalani said. "Because we could operate around the clock, the steam turbines run continuously and shutdowns and restarts are not required. Furthermore, our combined process is more efficient than the standalone process that produces electricity and the one that produces and stores hydrogen."
The system has been simulated using models, but there has been no experimental component to the research.
"The overall sun-to-electricity efficiency of the hydricity process, averaged over a 24-hour cycle, is shown to approach 35 percent, which is nearly the efficiency attained by using the best photovoltaic cells along with batteries," Gençer said. "In comparison, our proposed process stores energy thermo-chemically more efficiently than conventional energy-storage systems, the coproduced hydrogen has alternate uses in the transportation-chemical-petrochemical industries, and unlike batteries, the stored energy does not discharge over time and the storage medium does not degrade with repeated uses."
Agrawal said, "The concept combines processes already developed by other researchers while also improving on these existing processes. The daytime and night-time systems would use much of the same equipment, allowing them to segue seamlessly, representing an advantage over other battery-based solar technologies."
|
Saturday, 12 December 2015
Thursday, 10 December 2015
Inside a Cell Phone
On a "complexity per cubic inch" scale, cell phones are some of the most intricate devices people use on a daily basis. Modern cell phones can process millions of calculations per second in order to compress and decompress the voice stream. If you have readHow Cell Phones Work, you know that they can transmit and receive on hundreds of FM channels, switching channels in sync with base stations as the phone moves between cells.
If you ever take a cell phone apart you will find that it contains just a few individual parts:
- A microscopic microphone
- A speaker
- An LCD or plasma display
- A keyboard not unlike the one we saw in a TV remote control
- An antenna
- A battery
- An amazing circuit board containing the guts of the phone
The circuit board is the heart of the system. Here is one from a typical Ericsson cell phone:
In this picture several of the components are identified. Starting from the left you the see the Analog-to-Digital and Digital-to-Analog conversion chips. You can learn more about A-to-D and D-to-A conversion and its importance to digital audio in How CDs Work. The DSP is a "Digital Signal Processor" -- a highly customized processor designed to perform signal manipulation calculations at high speed. This DSP is rated at about 40 MIPS (Millions of Instructions per Second) and handles all the signal compression and decompression. The microprocessor (Ericsson phones use an ASIC version of the Z-80) and memory handle all of the housekeeping chores for the keyboard and display, deal with command and control signaling with the base station and also coordinate the rest of the functions on the board. The RF and power section handles power management and recharging and also deals with the hundreds of FM channels. Finally the RF (Radio Frequency) amplifiers handle signals in and out of the antenna.
What is amazing is that all of that functionality -- which only 30 years ago would have filled the entire floor of an office building -- now fits into a package that sits comfortably in the palm of your hand.
Wednesday, 9 December 2015
DC Motor Speed and direction control over GSM Mobile/Modem
This is a DC Motor Control Device which controls the stepper motor through messages received as SMS or GPRS Packets and also sends acknowledgment of task. These devices are designed to remotely control the DC Motor from anywhere and anytime. This remote control DC motor control device is possible through embedded systems. The toolkit receives the SMS, validates the sending Mobile Identification Number (MIN) and performs the desired operation after necessary code conversion. The system is made efficient by SIMs so that the SMS can be received by number of devices boards in a locality using techniques of time division multiple access. With this in mind, we have designed the project to work with sim300 technology.
The speed of the motor is measured using contact-less speed measurement technique. Speed control is done using PWM (Pulse Width Modulation) method. User can send SMS messages to control the motor speed and direction. A GSM modem attached to the control unit handles automatic SMS sending and receiving process. As this monitoring and controlling can be done by any mobile phone, we provided a security feature by implementing password-based protection. User has to send the password along with the commands to be controlled.
The purpose of this project is to control the speed and direction of DC Motor using Microcontroller and GSM Modem with password protection. This uses a PWM (Pulse Width Modulation) technique to control the speed of motor from 0% to 100%.
The SMS can be sent to any mobile user of any service provider with no or minimum charge. This system is designed using a GSM modem. The GSM modem is configured as a receiver. The SMS sent by the user is written in a particular format. The controller receives the message and decodes it and identifies the task to be done and the SMS received by the controller is decoded, and the proper message is displayed on the LCD by the microcontroller.
GSM Modem connected to microcontroller unit is used to control the motor and know the motor live speed. Microcontroller automatically reads the SMS messages stored in the SIM card and takes necessary action like speed control, direction control etc. There will be a particular code that needs to be sent through SMS to set the speed and get the speed from the DC motor.
Components
- GSM Module – SIM 300
This GSM Modem can accept any GSM network operator SIM card and act just like a mobile phone with its own unique phone number. Advantage of using this modem will be that you can use its RS232 port to communicate and develop embedded applications. Applications like SMS Control, data transfer, remote control and logging can be developed easily.The modem can either be connected to PC serial port directly or to any microcontroller. It can be used to send and receive SMS or make/receive voice calls. It can also be used in GPRS mode to connect to internet and do many applications for data logging and control. In GPRS mode you can also connect to any remote FTP server and upload files for data logging.
This GSM modem is a highly flexible plug and play quad band GSM modem for direct and easy integration to RS232 applications. Supports features like Voice, SMS, Data/Fax, GPRS and integrated TCP/IP stack.
- PIC 16F887
The PIC16F887 is one of the latest products from Microchip. It features all the components which modern microcontrollers normally have. For its low price, wide range of application, high quality and easy availability, it is an ideal solution in applications such as: the control of different processes in industry, machine control devices, measurement of different values etc. Some of the features are as follows:-
· RISC Architecture
· Oscillator Support 0-20 MHz
· In Circuit Serial Programming Option (ICSP)
· Watch-Dog Timer
· Brown-out Reset (BOR) with software control option
· Power saving sleep mode
· Enhanced UART Module
· 256 bytes EEPROM
· PWM output steering control
- Motor Driver IC – L293D
The L293 and L293D are quadruple high-current half-H drivers. The L293 is designed to provide bidirectional drive currents of up to 1 A at voltages from 4.5 V to 36 V. The L293D is designed to provide bidirectional drive currents of up to 600-mA at voltages from 4.5 V to 36 V. Both devices are designed to drive inductive loads such as relays, solenoids, dc and bipolar stepping motors, as well as other high-current/high-voltage loads in positive-supply applications. All inputs are TTL compatible. Each output is a complete totem-pole drive circuit, with a Darlington transistor sink and a pseudo-Darlington source. Drivers are enabled in pairs, with drivers 1 and 2 enabled by 1,2EN and drivers 3 and 4 enabled by 3,4EN.
When an enable input is high, the associated drivers are enabled and their outputs are active and in phase with their inputs. When the enable input is low, those drivers are disabled and their outputs are off and in the high-impedance state. With the proper data inputs, each pair of drivers forms a full-H (or bridge) reversible drive suitable for solenoid or motor applications.
Block Diagram
Circuit Diagram
GSM technology capable solution has proved to be controlled remotely, provide industrial security has achieved the target to control different industrial appliances remotely using the SMS-based system satisfying user needs and requirements GSM technology capable solution has proved to be controlled remotely, provide industrial security and is cost effective as compared to the previously existing systems.
Monday, 30 November 2015
Losses In Transformer
Losses In Transformer
An electrical
transformer is an static device, hence
mechanical losses (like windage or friction losses) are absent in it. A
transformer only consists of electrical losses (iron losses and copper losses).
Transformer losses are similar to losses
in a DC machine, except that transformers do not have
mechanical losses.
Losses in transformer are explained below -
(I)
Core Losses Or Iron Losses
Eddy current loss and
hysteresis loss depend upon the magnetic properties of the material used for
the construction of core. Hence these losses are also known ascore losses or iron
losses.
§
Hysteresis loss in transformer: Hysteresis loss is due to reversal of
magnetization in the transformer core. This loss depends upon the volume and
grade of the iron, frequency of magnetic reversals and value of flux density.
It can be given by, Steinmetz formula:
Wh= ηBmax1.6fV (watts) where, η = Steinmetz hysteresis constant
V = volume of the core in m3
§
Eddy current loss in transformer: In transformer, AC
current is supplied to the primary winding which sets up alternating
magnetizing flux. When this flux links with secondary winding, it produces
induced emf in it. But some part of this flux also gets linked with other
conducting parts like steel core or iron body or the transformer, which will
result in induced emf in those parts, causing small circulating current in
them. This current is called as eddy current. Due to these eddy currents, some
energy will be dissipated in the form of heat.
(Ii)
Copper Loss In Transformer
Copper loss is due to
ohmic resistance of the transformer windings. Copper loss for the primary
winding is I12R1 and for secondary winding
is I22R2. Where, I1 and I2 are
current in primary and secondary winding respectively, R1 and R2 are
the resistances of primary and secondary winding respectively. It is clear that
Cu loss is proportional to square of the current, and current depends on the
load. Hence copper loss in transformer varies with the load.
Efficiency of Transformer
Just like any other electrical machine, efficiency of a
transformer can be defined as the output power divided by the input
power. That is efficiency = output / input .Transformers are the most highly efficient electrical
devices. Most of the transformers have full load efficiency between 95% to
98.5% . As a transformer being highly efficient, output and input are having
nearly same value, and hence it is impractical to measure the efficiency of
transformer by using output / input. A better method to find efficiency of a
transformer is using,
efficiency = (input -
losses) / input = 1 - (losses / input).
Condition For Maximum
Efficiency
Let,Copper loss = I1
2R1 & Iron loss
= Wi
Hence, efficiency of a transformer will be maximum when copper loss and iron
losses are equal.
That is Copper loss = Iron loss.
Losses in transformer are explained below -
Wh= ηBmax1.6fV (watts) where, η = Steinmetz hysteresis constant
V = volume of the core in m3
That is Copper loss = Iron loss.
Saturday, 28 November 2015
Clean Solar Power to Replace Fossil Fuel
s
India has recently stepped it up in terms of the government’s support of renewable energy through its efforts in moving from coal powered railways to clean solar panels for electricity and fuel consumption.
The Indian Railways is one of the largest railway systems in the world, requires massive energy expenditures – specifically 17.5 kWh of electricity per year, and over 90,000 liters of diesel.
Fuel bills are actually the 2nd largest expense of the Indian Railways. With rising prices of fuel imports, the Indian government has began focusing on other forms of energy to power the coaches, specifically solar energy.
Recently, the first solar powered coach was tested, which is a non-airconditioned coach with solar panels installed on its rooftop. The Rewari-Sitapur passenger train was able to generate 17 kWh for an entire day, which was enough to cover only the lighting load of the coach.
Two other coaches have been fitted with solar panels, but are yet to begin their testing stage. These said coaches belong to 2 narrow-gauge trains for the Pathankot-Jogindernagar route in the Kangra Valley and the Kalka-Shimla section.
This massive project and potential move to clean energy is touted to solve two major problems faced by the IR today: rising energy prices and the threats to environment caused by the massive use of fossil fuels. Ideally, the trains will still be powered by traditional diesel-run engines, but the lighting of the passenger coaches will utilize solar energy.
According to a Northern Railway official, there is a total of 40 square meter of space on a typical coach rooftop. The said coach was fitted with 12 solar panels over 24 square meters, but the remaining 16 square meters can still accommodate 6 more panels for more energy production.
Officials say that India has a huge potential for solar power, and that the installation of solar panels are not limited to the train’s rooftops, but can also include those of the railway’s buildings to provide renewable energy for its infrastructure.
The typical cost for fitting panels on one coach is Rs 3.90 lakh, and its return on investment per year is Rs 1.24 lakh. The potential savings of millions of dollars can also include that of foreign exchange reserves in terms of diesel imports. Aside from solar power’s obvious economic benefits for the IR, the use of clean solar power also reduces their emission of carbon dioxide by over 200 tonnes in a year.
Currently, the Indian government is planning to create a solar policy that would lead the way to the production of 1000 megawatts of solar power in the next 5 years. The main aim of the said policy states that by the year 2020, the IR’s renewable energy production will be able to provide at least 10% of the entire enterprise’s energy consumption need.
Today, the project is aimed at a few rooftops lighting up a few non-airconditioned coaches. Future testing is still needed to understand the economics of the proposal before it is implemented on a larger scale. So far, results have been promising and further positive data might just lead the Indian Railways to utilize the use of clean solar energy for all of its coaches.
Friday, 27 November 2015
Wireless energy transmission
Wireless energy generation in space is one step closer to becoming a feasible delivery source of power following a new experiment that transmitted electricity through microwaves.
The Japan Aerospace Exploration Agency (Jaxa) conducted the research, which sent 1.8 kilowatts of electricity 170 feet through the air, in the form of microwave radiation. The beam was transmitted with a great degree of accuracy, showing the technique may be used on a larger scale.
Solar energy might, one day, be collected by massive solar panels in space, and the energy generated from the systems could be sent to Earth in the form of microwaves. Such networks for generating electricity in space would have some advantages over ground-based systems. Solar collectors in space would not be subject to the cycles of day or night, or cloudy conditions.
"This was the first time anyone has managed to send a high output of nearly 2 kilowatts of electric power via microwaves to a small target, using a delicate directivity control device," a Jaxa spokesman said.
Engineers at Jaxa have spent years researching new technologies to deliver energy from space-based solar collectors down to our home planet. Solar cells commonly power satellites, space probes, and the International Space Station. However, delivering that power to Earth in an economical manner is still a challenge facing developers.
Current plans to develop an orbiting energy generation system involve sending satellites into geostationary orbits more than 22,000 miles above the Earth. The satellites would require large solar panels. Challenges facing engineers include launching these massive solar collectors that high above the Earth, and maintaining them once they are in space. Because of these issues, Jaxa engineers believe that a full network to generate electricity in space will not be available until sometime in the 2040's.
Japan is dependent on imports for near all of its energy needs, feeding a desire to develop their own systems. The nation had utilized nuclear reactors to generate electricity, but those plants shut down in the wake of the 2011 Fukushima disaster.
Mitsubishi Heavy Industries recently announced its researchers have successfully transmitted around 10 kilowatts of electricity to a receiver located more than 1,600 feet.
The idea of producing energy in space and sending it to Earth for use has been studied by American researchers for more than 50 years.
Additional uses for the transmitters could include charging electric cars, or sending electricity to remote regions in the wake of natural and man made disasters. Future development of the current system could produce a device capable of transmitting and receiving energy from ocean platforms, far from the nearest coast.
Thursday, 26 November 2015
(Organic Photovoltaics)OPV Cell
This
is a model of a generator being developed by the Georgia Institute of
Technology that looks to take advantage of natural air movements in hot areas.
When the sun’s heat hits the ground, a layer of hot air forms at ground level.
If that ground-level air is hotter than the air above, it can create upwardly
moving whirlwind. In nature, this columnar vortex phenomenon creates “dust
devils,” or spinning whirlwinds that lift dirt off the ground. In the device,
hot air rises through the turbine, generating electricity.
Features of OPV cell
The most unique aspect of the OPV cell devise is the transparent conductive electrode. This allows the light to react with the active materials inside and create the electricity. Now graphene/polymer sheets are used to create thick arrays of flexible OPV cells and they are used to convert solar radiation into electricity providing cheap solar power.
New OPV design:
Now a research team under the guidance of Chongwu Zhou, Professor of Electrical Engineering, USC Viterbi School of Engineering has put forward the theory that the graphene – in its form as atom-thick carbon atom sheets and then attached to very flexible polymer sheets with thermo-plastic layer protection will be incorporated into the OPV cells. By chemical vapour deposition, quality graphene can now be produced in sufficient quantities also.
Differences between silicon cells and graphene OPV cells:
The traditional silicon solar cells are more efficient as 14 watts of power will be generated from 1000 watts of sunlight where as only 1.3 watts of power can be generated from a graphene OPV cell. But these OPV cells more than compensate by having more advantages like physical flexibility and costing less.
More economical in the long run:
According to a team member, it may be one day possible to run printing presses with these economically priced OPVs covering extensive areas very much like printing newspapers. In Gomez’ words – “They could be hung as curtains in homes or even made into fabric and be worn as power generating clothing…. imagine people powering their cellular phone or music/video device while jogging in the sun.”
Advantages of OPVs:
The most unique aspect of the OPV cell devise is the transparent conductive electrode. This allows the light to react with the active materials inside and create the electricity. Now graphene/polymer sheets are used to create thick arrays of flexible OPV cells and they are used to convert solar radiation into electricity providing cheap solar power.
New OPV design:
Now a research team under the guidance of Chongwu Zhou, Professor of Electrical Engineering, USC Viterbi School of Engineering has put forward the theory that the graphene – in its form as atom-thick carbon atom sheets and then attached to very flexible polymer sheets with thermo-plastic layer protection will be incorporated into the OPV cells. By chemical vapour deposition, quality graphene can now be produced in sufficient quantities also.
Differences between silicon cells and graphene OPV cells:
The traditional silicon solar cells are more efficient as 14 watts of power will be generated from 1000 watts of sunlight where as only 1.3 watts of power can be generated from a graphene OPV cell. But these OPV cells more than compensate by having more advantages like physical flexibility and costing less.
More economical in the long run:
According to a team member, it may be one day possible to run printing presses with these economically priced OPVs covering extensive areas very much like printing newspapers. In Gomez’ words – “They could be hung as curtains in homes or even made into fabric and be worn as power generating clothing…. imagine people powering their cellular phone or music/video device while jogging in the sun.”
Advantages of OPVs:
The
flexibility of OPVs gives these cells additional advantage by being operational
after repeated bending unlike the Indium-Tin-Oxide cells. Low cost,
conductivity, stability, electrode/organic film compatibility, and easy
availability along with flexibility give graphene OPV cell a decidedly added
advantage over other solar cells.
This is a model of a generator being developed by the Georgia Institute of Technology that looks to take advantage of natural air movements in hot areas. When the sun’s heat hits the ground, a layer of hot air forms at ground level. If that ground-level air is hotter than the air above, it can create upwardly moving whirlwind. In nature, this columnar vortex phenomenon creates “dust devils,” or spinning whirlwinds that lift dirt off the ground. In the device, hot air rises through the turbine, generating electricity.
Tuesday, 24 November 2015
how power coal fired plant work
A power station is really a machine that extracts energy from a fuel. Some power stations burn fossil fuels such as coal, oil, or gas.Nuclear power stations produce energy by splitting apart atoms of heavy materials such as uranium and plutonium. The heatproduced is used to convert water into steam at high pressure. This steam turns a windmill-like device called a turbine connected to an electricity generator. Extracting heat from a fuel takes place over a number of stages and some energy is wasted at each stage. That means power plants are not very efficient: in a typical plant running on coal, oil, or gas, only about 30–40 percent of the energy locked inside the fuel is converted to electricity and the rest is wasted.
Power station transformers Transmission line |
- Fuel: The energy that finds its way into your TV,computer, or toaster starts off as fuel loaded into a power plant. Some power plants run on coal, while others use oil, natural gas, or methane gas from decomposing rubbish.
- Furnace: The fuel is burned in a giant furnace to release heat energy.
- Boiler: In the boiler, heat from the furnace flows around pipes full of cold water. The heat boils the water and turns it into steam.
- Turbine: The steam flows at high-pressure around a wheel that's a bit like a windmill made of tightly packed metal blades. The blades start turning as the steam flows past. Known as a steam turbine, this device is designed to convert the steam's energy into kinetic energy (the energy of something moving). For the turbine to work efficiently, heat must enter it at a really high temperature and pressure and leave at as low a temperature and pressure as possible.
- Cooling tower: The giant, jug-shaped cooling towers you see at old power plants make the turbine more efficient. Boiling hot water from the steam turbine is cooled in a heat exchanger called a condenser. Then it's sprayed into the giant cooling towers and pumped back for reuse. Most of the water condenses on the walls of the towers and drips back down again. Only a small amount of the water used escapes as steam from the towers themselves, but huge amounts of heat and energy are lost.
- Generator: The turbine is linked by an axle to a generator, so the generator spins around with the turbine blades. As it spins, the generator uses the kinetic energy from the turbine to make electricity.
- Electricity cables: The electricity travels out of the generator to a transformer nearby.
- Step-up transformer: Electricity loses some of its energy as it travels down wire cables, but high-voltage electricity loses less energy than low-voltage electricity. So the electricity generated in the plant is stepped-up (boosted) to a very high voltage as it leaves the power plant.
- Pylons: Hugh metal towers carry electricity at extremely high voltages, along overhead cables, to wherever it is needed.
- Step-down transformer: Once the electricity reaches its destination, another transformer converts the electricity back to a lower voltage safe for homes to use.
- Homes: Electricity flows into homes through underground cables.
- Appliances: Electricity flows all round your home to outlets on the wall. When you plug in a television or other appliance, it could be making a very indirect connection to a piece of coal hundreds of miles away!
Monday, 23 November 2015
Subscribe to:
Posts (Atom)
TRANSISTORS
TRANSISTORS A transistor is a semiconductor device that contains three regions separated by two distinct PN junctions. The two junctions are...