Showing posts with label tranformer installation. Show all posts
Showing posts with label tranformer installation. Show all posts

Monday 11 September 2017

GUIDELINES FOR INSTALLING TRANSFORMERS

GTRANSFORM INSTALLATION UIDELINES
When your transformer arrives on site, various procedures must be performed to ensure effective operation. The efficiency of the transformer depends on the correct installation as well as on the design and production quality. The instructions stated in the manufacturer's manual or in the Standard will be followed to ensure adequate safety for personnel and tools. This section will provide general guidelines for installing and testing both dry and liquid-filled transformers for installation.
Typical transformer tests for each unit include the following:
· Estimation, of voltage relation;
• Polarity of single and 3 phase units (because transformers in single phase are sometimes present
connected in parallel and sometimes in a 3-phase bank);
• 3-phase unit relationships (important if there are two or more transformers
working in tandem);
• Excitation current, which is related to efficiency and ensures that the contextual design is accurate;
• No-load core loss, which is also related to efficiency and optimal content design;
• Resistance, in calculating the rotating temperature
• Impedance (by checking the short circuit), which provides the information needed for the breaker
and / or integrate measurement and disruption measurement and coordination of transfer schemes;
• Loss of load, which is also directly related to the efficiency of the transformer;
• Regulation, which stipulates the reduction of electricity when loading; and
• Used and attracted energy, which ensures dielectric strength.
There are additional tests that may work, depending on how and where the transformer will be used. Additional tests that may be performed include the following:
• Impulse (where lightning and power fluctuations are common);
• Noise (important for applications in residential and office areas and can be used as
comparisons with future sound tests to identify any underlying problems);
• Increased coil temperature, which helps to ensure that design limits are not exceeded;
• Corona of medium (MV) and high-voltage (HV) units, which helps determine
the insulation system is efficient;
• Resistance to insulation installation (meg-ohmmeter test), which determines the drying of the installation and
it is usually done after childbirth to serve as a benchmark against the future
reading; and
• The embossing force, which is applied to the first installation and every few years thereafter
to help determine the aging process of insulation.

Site considerations
When planning an installation, a location is selected, which corresponds to all current security codes
does not interfere with the normal movement of employees, equipment, and materials. Location
should not expose the transformer to potential damage from cranes, trucks, or moving objects.
Initial test for the receiver of the transformer If received, the transformer should be inspected for damage during shipment. The inspection must be done before removing it from the train or truck, and, if there is any apparent damage or misconduct, the claim must be lodged with the carrier immediately and the manufacturer informed. Later, the covers or panels should be removed and the internal inspection should be done for damage or removal of parts, loose or broken connections, dirt or foreign material, and the presence of water or moisture. When the transformer is moved or when available
stored before installation, this test should be repeated before placing the transformer in service.

Plan to prevent contamination
Create a process to develop all the tools, hardware, and any other tools used in
test, assembly, and transformer testing. A test sheet should be used to record everything
items, and verification should be done so that these items are properly calculated
completion of work.

Creating active links
A connection will be made, between the transformer terminals and the incoming one
outgoing conductors, carefully following the instructions given on the nameplate or
communication diagram. Check every tap jumper for proper positioning and durability. Re-tighten
all bolts hold the cable after the first 30 days of service. Before the connection works do
assurance that all safety measures have been taken. Adequate support systems will be put in place
inlet / outlet connecting cables, so that no machine pressure is applied
transformer bushings and connections. Such stress can cause a tree to crack or a
connection fails.

Noise control
All transformers, once powerful, produce an audible sound. Although there are no moving parts
in a transformer, the spine produces sound. In the presence of a magnetic field, the core
side laminations and contract. This occasional mechanical movement creates noise
120 Hz basic vibration frequency and harmonic harmony output of this key.
The location of the transformer is directly related to the volume of its sound. Because
for example, if the transformer is installed in a quiet hallway, clear hum will be recognized. If the unit
installed in the area shared with other equipment such as motors, pumps, or compressors,
transformer hum will not be detected. Some applications require reduced volume, such as
a large unit in a commercial building with people working near it. Occasionally, installation
some form of noise reduction will be required.

Make sure the transformer is low
Laying is required to remove any standing stagnant charges and is needed as a protection if the transformer windows accidentally come in contact with the context or enclosure (or tank of wet types). Note that in MV transformers, secondary neutrality is sometimes based on restriction. Make sure all basic or integration plans meet the NEC and local codes.

Types of source

  Ideal Voltage Source:  An ideal voltage source is capable to maintain the constant voltage across its terminals. The voltage across the vo...

Translate