Showing posts with label power system. Show all posts
Showing posts with label power system. Show all posts

Saturday, 16 April 2022

ADVANTAGES OF PER UNIT SYSTEM

 

PER UNIT SYSTEM

The per-unit system expressed the voltages, currents, powers, impedances, and other electrical quantities basis by the equation:

Quantity per unit (pu) = Actual value/ Base value of quantity

ADVANTAGES OF PER UNIT SYSTEM

  1. While performing calculations, referring quantities from one side of the transformer to the other side serious errors may be committed. This can be avoided by using per unit system.
  2. Per unit impedances of electrical equipment of similar type usually lie within a narrow range, when the equipment ratings are used as base values.
  3. Manufacturers usually specify the impedances of machines and transformers in per unit or percent of name plate ratings.
  4. Transformers can be replaced by their equivalent series impedances.
  5. Reduced calculations in three-phase systems.
  6. For apparatus of the same general type the p.u. and volt drops or losses are in the same order, regardless of size.

PER UNIT CONVERSION PROCEDURE OF SINGLE PHASE

  1. Pick a VA base for the entire system, Sbase
  2. Pick a voltage base for each different voltage level, Vbase.
  3. Voltage bases are related by transformer turns ratios.
  4. Voltages are line to neutral.
  5. Calculate the impedance base, Zbase = (Vbase)2/Sbase
  6. Calculate the current base, Ibase =Vbase/Zbase
  7. Convert actual values to per unit
  8. Convert to per unit (p.u.) (many problems are already in per unit)
  9. Solve
  10. Convert back to actual as necessary

Friday, 11 March 2022

Structure of power systems

        Electricity is generated at central power stations and then transferred to loads (i.e, Domestic, Commercial and Industrial) through the transmission and distribution system. A combination of all these systems is  known as an Electric Power System.

     A power system is a combination of central generating stations, power transmission system, Distribution and utilization system. Electric power is produced at the power stations which are located at favourable places, generally quite away from the consumers. It is then transmitted over large distances to load centres with the help of conductors known as transmission lines. Finally, it is distributed to a large number ofsmall and big consumers through a distribution network,


Energy is generated (transformed from one to another) at the generating stations. Generating stations are of different type, for example, thermal, hydro, solar power stations, nuclear. The generated electricity is stepped up through the transformer and then transferred over transmission lines to the load centres.

Electric power is generated at a voltage of 11 to 25 kV which then is stepped up to the transmission levels in the range of 66 to 400 kV (or higher). As the transmission capability of a line is proportional to the square of its voltage, research is continuously being carried out to raise transmission voltages. Some of the countries are already employing 765 kV. The voltages are expected to rise to 800 kV in the near future. In India, several 400 kV lines are already in operation. One 800 kV line has just been built. . The transmission of electric power at high voltages has several advantages including the saving of conductor material and high transmission efficiency. It may appear advisable to use the highest possible voltage for transmission of electric power to save conductor material and have other advantages. But there is a limit to which this voltage can be increased. It is because the increase in transmission voltage introduces insulation problems as well as the cost of switchgear and transformer equipment is increased. Therefore, the choice of proper transmission voltage is essentially a question of economics. Generally, the primary transmission is carried at 66 kV, 132 kV, 220 kV or 400 kV.

Transmission System And Distribution System

The large network of conductors between the power station and the consumers broadly divided into two parts viz., can be transmission system and distribution system. Each part can be further subdivided into two — primary transmission and secondary transmission and primary distribution and secondary distribution.

Primary transmission.

The first stepdown of voltage from transmission level is at the bulk power substation, where the reduction is to a range of 33 to 132 kV, depending on the transmission line voltage. The electric power at 132 kV is transmitted by 3-phase, 3-wire overhead system to the outskirts of the city. This forms the primary transmission.

Secondary transmission

The primary transmission line terminates at the receiving station (RS) which usually lies at the outskirts of the city. At the receiving station, the voltage is reduced to 33kV by step-down transformers. From this station, electric power is transmitted at 33kV by 3-phase, 3-wire overhead system to various sub-stations (SS) located at the strategic points in the city. This forms the secondary transmission.

Primary distribution

The secondary transmission line terminates at the sub-station (SS) where voltage is reduced from 33 kV to 11kV, 3-phase, 3-wire. The 11 kV lines run along the important road sides of the city. This forms the primary distribution. It may be noted that big consumers (having demand more than 50 kW) are generally supplied power at 11 kV for further handling with their own sub-stations.

Secondary distribution

In the last stage in a Power System, the electric power from primary distribution line (11 kV) is delivered to distribution sub-stations (DS) or Distribution Transformer. A typical pole mounted distribution transformer is shown in Fig. 5. These sub-stations are located near the consumers’ localities and step down the voltage to 400 V, 3-phase, 4-wire for secondary distribution. The voltage between any two phases is 400 V and between any phase and neutral is 230 V. The single-phase residential lighting load is connected between any one phase and neutral.

TRANSISTORS

TRANSISTORS A transistor is a semiconductor device that contains three regions separated by two distinct PN junctions. The two junctions are...

Translate