Showing posts with label Electrical shock. Show all posts
Showing posts with label Electrical shock. Show all posts

Monday, 24 July 2017

ELECTRICAL SAFETY

Electric shock:
It can be described as a sudden and dangerous movement of the nervous system with electrical energy.

ELECTRICAL SHOCK YOU CAN FEEL AS A FOLLOWING: When the body becomes part of the circuit and the current flows in one place and then exits another point; possible -

With both wires of the electrical circuit
With a single wire of a strong circle and ground
 With a piece of metal that has heated itself by touching a strong wire.
Electric shock:

The magnitude of the electrical shock depends on -

The level of energy flow in the body.
The current approach to the body.
The length of time the body is in the ring.
Current frequency.
The stage of the heart cycle when shock occurs.
The physical and mental state of a person
HUMAN RESISTANCE:


REASONS FOR ELECTRICAL SHOCK:
Touching an empty live driver
Touching the improperly installed driver
Open / short circuit due to resource failure
Dry electricity
Lightning
The touch body of the live machine.
EARTH LEAKAGE CIRCUIT BREAKER (ELCB)
The Indian Electricity Regulations 1956 were amended in 1985 to include the use of the ELCB mandatory requirement of more than 5 KW of electrical load to accommodate power leaks that may cause shock.
 The key features of this ELCB are
It is currently in operation
It applies to the principle of core balance current transformer
It works even if it fails moderately.
Travel within 30 million seconds.
Free travel route - i.e. during the reset error is impossible and the trip even if forced to be held in the "ON" area.
Occupational health - more than 20,000 jobs to 63 A and more than 10,000 jobs for 80 A & 1OOAmps.
10 KA short circuit resistance. - Available up to 100A, 2 pole & 4 pole for sensitivity from 30 milli amps onwards. (100 A & 300 A sensitive materials are also available according to need.)

Thursday, 23 March 2017

Voltage or current which is more dangerous



The difference between electricity and current is confusing for many people who do not have a background in electrical science / engineering. How many times have we heard the phrase “touch the cable with x volts running”, which discourages electrical engineers.

To understand the difference, consider water. The water itself is like an electric charger, which always does nothing but, if you lift it up to the top, it gets a potent power and wants to flow down; voltage is often referred to as power for a reason. You will only get a flow if you have a difference (possible), in other words a voltage, between a high water tank AND a low surface AND both are connected to a pipe of some kind. High power can only "kill" you if you allow current to flow. A “pipe” can be anything that electricity can flow into, say, a telephone, or it can be your body.

Now, if you connect a small pipe to your high water tank, that pipe has high resistance to flow and you will only get a small squirt of water at the end. The flow rate, "currently" (also called for a reason), is small although the potential difference is high and that small current will not harm it.

If on the other hand you connect a large fat sluice pipe (with "low resistance") to that water tank, you will get a large flow rate and it will drop you to your feet.

So, go back to electricity. Voltage is not something that kills you, it is now. The reason why high voltages are dangerous is because they have great potential to kill you. There is no danger of the current unless you put yourself in the current position by connecting the world's highest energy (or something) with your body.

So 240V (here in the UK) is dangerous because it is connected to your body down to earth with resistance (say) 1,200 ohms or more will push the current 200mA for you enough to kill you. If you happen to be standing on a rubber mat, then you can escape because now the resistance on the road is high so it is currently low even though the voltage is the same.

On the other hand your USB phone charger probably emits about 1A (enough to kill you) but that is not dangerous because a) it passes through the cable and does not pass through you and b) because it is close. 5V therefore, if you plug it into your body resistance which is much higher than your phone, it will produce a small current (about 4mA or less) that will not hurt you at all.

So it is a deadly current but the electrical power is dangerous.

Having said that, birds can safely sit on top of power lines because even though those may be '000s of volts, the air gap resistance between them and the ground is never ending so there is no current flow (backwards. In my water simulation, the water tank is very high). but no pipe is connected to it, the bird is sitting on top with the tank).


I get to think about it about the height of the water and the pipes making it very clear to the average person.

TRANSISTORS

TRANSISTORS A transistor is a semiconductor device that contains three regions separated by two distinct PN junctions. The two junctions are...

Translate