Wednesday, 26 December 2018
Saturday, 15 December 2018
Thursday, 26 July 2018
Why Capacitors bank is connected parallel with a load to improve power factor
we can improve the power factor by connecting the capacitor bank in parallel or series.If we connect the capacitor bank in parallel that means additional installation and O&M costs can be saved. In fact when we connect the capacitor bank to the series there is a decrease in the power of those capacitors in the series, a distance between 10-20% of the minimum transmission voltage. So power outages are not a major issue. The real problem is protection and the resulting cost: in the event of a short-circuit fault in the load there is a chance that all the transmission voltage will be applied to those capacitors and may fail. As we know it can be protected from over voltage voltages by using appropriate switch switches and split gap sparks. It therefore means additional installation and O&M (operation and maintenance) costs that can be avoided simply by connecting the capacitors accordingly.
Another great advantage is that when we connect it seamlessly you separate your installation, which makes it easier to repair. For example, if you need to replace some bank capacitors, or add others, to the corresponding series you need to do to disconnect the bank throughout the network, instead of the whole facility if you were connected to a network. series.
Just for the record, there are cases where capacitors are connected in series, but not in the load terminals and do not affect the compensating capacitor banks that are active (well, not really). These are the conditions in which it is desired to increase the natural strength of the transmission line. They are also connected to the series to minimize the reaction of the long line (not to be confused with its feature). Therefore, increasing its current capacity and consequently increasing its capacity and stability.This measure is mainly used for long transmission lines, i.e. 500 km and more.
Subscribe to:
Posts (Atom)
TRANSISTORS
TRANSISTORS A transistor is a semiconductor device that contains three regions separated by two distinct PN junctions. The two junctions are...