Tuesday 22 December 2015

Working of Wind Turbines

a wind turbine works the opposite of a fan. Instead of using electricity to make wind, like a fan, wind turbines use wind to make electricity. The wind turns the blades, which spin a shaft, which connects to a generator and makes electricity. View the wind turbine animation to see how a wind turbine works or take a look inside.
Wind is a form of solar energy and is a result of the uneven heating of the atmosphere by the sun, the irregularities of the earth's surface, and the rotation of the earth. Wind flow patterns and speeds vary greatly across the United States and are modified by bodies of water, vegetation, and differences in terrain. Humans use this wind flow, or motion energy, for many purposes: sailing, flying a kite, and even generating electricity.
The terms wind energy or wind power describe the process by which the wind is used to generate mechanical power or electricity. Wind turbines convert the kinetic energy in the wind into mechanical power. This mechanical power can be used for specific tasks (such as grinding grain or pumping water) or a generator can convert this mechanical power into electricity.

TYPES OF WIND TURBINES

Wind turbines at the Forward Wind Energy Center in Fond du Lac and Dodge Counties, WisconsinAn eggbeater-style wind turbine named after its French inventor Darrieus.
Modern wind turbines fall into two basic groups: the horizontal-axis variety, as shown in the photo to the far right, and the vertical-axis design, like the eggbeater-style Darrieus model pictured to the immediate right, named after its French inventor. Horizontal-axis wind turbines typically either have two or three blades. These three-bladed wind turbines are operated "upwind," with the blades facing into the wind.
Wind turbines can be built on land or offshore in large bodies of water like oceans and lakes. Though the United States does not currently have any offshore wind turbines, the Department of Energy is funding efforts that will make this technology available in U.S. waters.

SIZES OF WIND TURBINES

GE Wind Energy's 3.6 MW wind turbine.A Bergey windmill next to apartments
Utility-scale turbines range in size from 100 kilowatts to as large as several megawatts. Larger wind turbines are more cost effective and are grouped together into wind farms, which provide bulk power to the electrical grid. In recent years, there has been an increase in large offshore wind installations in order to harness the huge potential that wind energy offers off the coasts of the U.S. 
Single small turbines, below 100 kilowatts, are used for homes, telecommunications dishes, or water pumping. Small turbines are sometimes used in connection with diesel generators, batteries, and photovoltaic systems. These systems are called hybrid wind systems and are typically used in remote, off-grid locations, where a connection to the utility grid is not available.
Learn more about what the Wind Program is doing to support the deployment of small and mid-sized turbines for homes, businesses, farms, and community wind projects.

Tuesday 15 December 2015

Nuclear Fission Working

hydricity

Solarkraftwerk Waldpolenz, the first Solar 40-MW CdTe PV Array installed by JUWI Group in Brandis, Germany. Credit: JUWI Group

Researchers are proposing a new "hydricity" concept aimed at creating a sustainable economy by not only generating electricity with solar energy but also producing and storing hydrogen from superheated water for round-the-clock power production.
"The proposed hydricity concept represents a potential breakthrough solution for continuous and efficient power generation," said Rakesh Agrawal, Purdue University's Winthrop E. Stone Distinguished Professor in the School of Chemical Engineering, who worked with chemical engineering doctoral student Emre Gençer and other researchers. "The concept provides an exciting opportunity to envision and create a  to meet all the human needs including food, chemicals, transportation, heating and electricity."
Hydrogen can be combined with carbon from agricultural biomass to produce fuel, fertilizer and other products.
"If you can borrow carbon from sustainably available biomass you can produce anything: electricity, chemicals, heating, food and fuel," Agrawal said.
Findings are detailed in a research paper appearing this week (Dec. 14) in the online early edition of Proceedings of the National Academy of Sciences.
Hydricity uses solar concentrators to focus sunlight, producing high temperatures and superheating water to operate a series of electricity-generating steam turbines and reactors for splitting water into hydrogen and oxygen. The hydrogen would be stored for use overnight to superheat water and run the steam turbines, or it could be used for other applications, producing zero greenhouse-gas emissions.
"Traditionally electricity production and  have been studied in isolation, and what we have done is synergistically integrate these processes while also improving them," Agrawal said.
The PNAS paper was authored by Gençer; former chemical engineering graduate student Dharik S. Mallapragada; François Maréchal, a professor and chemical process engineer from École Polytechnique Fédérale de Lausanne in Switzerland; Mohit Tawarmalani, a professor and Allison and Nancy Schleicher Chair of Management at Purdue's Krannert School of Management; and Agrawal.
In superheating, water is heated well beyond its boiling point – in this case from 1,000 to 1,300 degrees Celsius - producing high-temperature steam to run turbines and also to operate solar reactors to split the water into hydrogen and oxygen.
"In the round-the-clock process we produce hydrogen and electricity during daylight, store hydrogen and oxygen, and then when  is not available we use hydrogen to produce electricity using a turbine-based hydrogen-power cycle," Tawarmalani said. "Because we could operate around the clock, the steam turbines run continuously and shutdowns and restarts are not required. Furthermore, our combined process is more efficient than the standalone process that produces electricity and the one that produces and stores hydrogen."
The system has been simulated using models, but there has been no experimental component to the research.
"The overall sun-to-electricity efficiency of the hydricity process, averaged over a 24-hour cycle, is shown to approach 35 percent, which is nearly the efficiency attained by using the best photovoltaic cells along with batteries," Gençer said. "In comparison, our proposed process stores energy thermo-chemically more efficiently than conventional energy-storage systems, the coproduced  has alternate uses in the transportation-chemical-petrochemical industries, and unlike batteries, the stored energy does not discharge over time and the storage medium does not degrade with repeated uses."
Agrawal said, "The concept combines processes already developed by other researchers while also improving on these existing processes. The daytime and night-time systems would use much of the same equipment, allowing them to segue seamlessly, representing an advantage over other battery-based solar technologies."

Types of source

  Ideal Voltage Source:  An ideal voltage source is capable to maintain the constant voltage across its terminals. The voltage across the vo...

Translate